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Longitudinal and Transverse Current
Distributions on Coupled
Microstrip Lines

MASANORI KOBAYASHI, MEMBER, IEEE, AND HIDETOSHI MOMOI

Abstract —The normalized longitudinal and transverse current distribu-
tions on coupled microstrip lines are obtained for even and odd modes by
using the charge conservation formula and the charge distributions calcu-
lated by a Green’s function technique. Their dependence on the shape
ratios w/h and s/h and on the relative permittivity ¢* of the substrate is
shown.

i. INTRODUCTION

I N CALCULATING accurately the dispersion character-

istics of microstrip line, the spectral-domain analysis
proposed by Itoh and Mittra [1], [2] has powerful features.
In this analysis, the choice of the basis functions is im-
portant for numerical efficiency. If the first few basis
functions approximate the actual unknown current distri-
butions reasonably well, the necessary size of the matrix
can be held small for a given accuracy of the solution, so
that CPU time can be saved.

Using the spectral-domain analysis, a previous paper [9]
confirmed that an unsuitable choice of basis functions
caused significant discrepancies between many computed
results, as shown by Kuester and Chang [3, Fig. 2]. The
closed-form expressions for the normalized current distri-
butions [8] used then were obtained by approximating the
results obtained using the method derived by Denlinger
[4]. In addition, the results shown in the previous paper [9]
have a high degree of accuracy for use as a “standard” of
an effective relative permittivity. This means not only that
the spectral-domain analysis has powerful features but also
that the method derived by Denlinger [4] is useful for
obtaining the normalized current distributions.

The present work determines the normalized longitudi-
nal and transverse current distributions for even and odd
modes on “coupled” microstrip line, shown in Fig. 1, with
concern for numerical efficiency in obtaining the disper-
sion characteristics. However, the literature determining
current distributions is sparse even for the single micro-
strip line, as indicated in a previous paper [8]. For an
example of the current distributions on coupled microstrip
line, we may cite the paper by Krage and Haddad [5].
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Fig. 1. Configuration of coupled microstrip line.

In this paper, the charge distributions for even and odd
modes are calculated with a high degree of accuracy using
a Green’s function technique [7] for various cases with
e*=1,2,4,18, 16, and 0.1 <w/h <10, and 0.1 < s/h <10,
respectively, and are used to calculate the current distribu-
tions.

II. PROCEDURE FOR CALCULATING THE
LONGITUDINAL AND TRANSVERSE
CURRENT DISTRIBUTIONS

The coupled microstrip line considered in this article is
shown in Fig. 1, where two infinitesimally thin strips and
the ground plane are taken as perfect conductors. The
structure is divided into two regions, corresponding to the
air and dielectric substrate regions of the structure. It is
also assumed that the substrate material is lossless and its
relative permittivity and permeability are ¢* and p*( =1),
respectively.

The quasi-TEM characteristics of this coupled micro-
strip line can be obtained by a Green’s function technique
[7] if a suitable Green’s function can be derived. Therefore,
only the appropriate Green’s function is described and
also the expression for the desired unknown charge distri-
bution.

Consider only the region x >0 (due to symmetry) as
that for the boundary-value problem. This problem is
two-dimensional, and the value of the Green’s function at
the point (x, ) for unit source charge at the point (x,, /)
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on the strip is determined as follows:
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where €, denotes the permittivity of vacuum, K= (1-
") /(1+€*), and g =1 for the even mode and —1 for the
odd mode.

Also, we express the desired unknown charge distribu-
tion a(x,, 7) on the strip as follows:
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in order to make o(x,, h) approach the true charge distri-
bution.

In this paper, we took m =40 in (3) and the truncated
number n = N in the infinite series (1) as satisfying

|K|¥~1<1078. (4)

The high degree of accuracy of the charge distributions
calculated here was checked from the results with larger m.
It may also be supported by the fact that the coupled
microstrip line becomes a single microstrip line with w/h
when s/h— co and with 2w/h when s/h— 0. In [7] it
was shown in detail that the Green’s function technique
has a high degree of accuracy for a single microstrip line.

Let the charge distributions for the even mode be de-
noted by oF(x) for e*=1 and o * for e* #1. Let the charge
dlstrlbutlons for the odd mode be denoted by o 9(x) for

=1 and 69 for e* #1.

Now the continuity equation between the longitudinal
and transverse current distributions, i¥ and i, and the
charge distribution o”(x) is expressed as

it 9if ,
(9): +8—;=—jwop(x)e_fﬁ )z (%)

where an e’/“’ time variation is assumed, and the super-
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script P becomes E or O for even or odd modes, respec-
tively. BP(f) denotes the phase constant (= w/v7(f),
w=2af), v(f)=c/yexf(f)) the phase velocity,

exP(f) the effective relative permittivity at the frequency
f, and ¢ the velocity of light in free space.

Let the total longitudinal current be denoted by
Iexp(— jBP(f)z), and denote the quantity 7,/v"( f) by Q.
Using the Green’s function technique, we can obtain the
charge distribution 6J(x) on a strip of the coupled micro-
strip line without the substrate (e* =1) for a given total
charge per unit length Q /e%F(0). Let i(x) be denoted by
the following approximate relation:

if(x) —eeff F(0)oq (x )Up(f)e_jﬁp(f)z- (6)
Substituting (6) into (5), we can derive the following

approximate expression for obtaining the transverse cur-
rent distribution on the strip:

i.f(x)=~jw(sgnx)
f{OP(X)—eeff (0)o(x)} dxe "Dz (7)
where

(-1, x<0
Sgnx_{ﬂ, x> 0.

These expressions for i[(x) and i}(x) are an extension
of those derived by Denlinger [4] for the single microstrip
line. '

ITI.  RESULTS OF NORMALIZED LONGITUDINAL
CURRENT DISTRIBUTIONS

Normalizing the longitudinal current distribution in (6)
to its value at the midpoint (W,, #) on the strip, we obtain

i(x)/i7(W,) = 05 (x) /05’ (W,) (8)

where W, = s /2+ w/2. Therefore, the normalized longitu-

dinal current distribution i”(x)/i/f(W,) can be expressed

approx1mately by the normahzed charge d1str1but1on
of (x)/ol(W,) for the case without the substrate.

Fig. 2 shows the normalized charge distributions
ol (x)/of(W,) on the strip for the even mode when w/h
=1 and hence also the normalized longitudinal current
distributions i £(x) /i E(W,). In Fig. 2, the curve for s/h =0
denotes the result for the single microstrip line. This curve
becomes the lower bound of curves for the coupled micro-
strip line on the left half of the strip and the upper bound
on the right half. On the other hand we can easily under-
stand that the curve for the single microstrip line with
w/h=1(s/h - o) becomes the upper bound on the left
half and the lower bound on the right half, although its
curve is not shown here. We may also derive the closed-
form expression for 1E(x)/zE(W) [10], but it is not shown
here since it is comphcated The result obtained is shown
by the dashed line for the case of w/h=1 and s/h=1 in
Fig. 2.
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Fig. 2. Normalized charge distributions of(x)/of (WX = 1E(x)/

i£(W,)) on the strip for the cases of w/h =1 (even mode). W, =5/2+
w/2. —— Present method. ---- Approximate formula [10].

1.0

Fig. 3. Normalized charge distributions of(x)/e{(W,)(=i%(x)/
i9(W,)) on the strip for the cases of w/kh =1 (odd mode). W, =5/2+
w/2. Present method. ---- Approximate formula [10].

Fig. 3 shows the normalized charge distributions
0Q(x)/sl(W,) on the strip for the odd mode when w/h =
1, and consequently the normalized longitudinal current
distributions i?(x)/i%(W,). The dashed line for the case of
w/h =1 and s/h =1 in Fig. 3 shows the result obtained by
a closed-form expression for i9(x)/i2(W,) [10].

Comparing the curves shown in Figs. 2 and 3, the
current distribution tends to concentrate at the outer edge
(x =5/2+w) of the strip for the even mode, but at the
inner edge (x = 5/2) of strip for the odd mode. The curves
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Fig. 4. Normalized transverse current distributions 1£(x)/[E(xE, )]
on the strip for the cases of s/h=1, w/h=0.1,05,1,2,4,and €* =2,
4, 8, 16 (even mode). Note: the curves for the various €* coincide.
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Fig. 5. Normalized transverse current distributions 15(x)/|iZ(xE, )
on the strip for the cases of w/h =1, s/h=0.1,0.5,1,4,and ¢*=2,4,

8, 16 (even mode). —— Present method. ----- Approximate formula
[10.

satisfy the edge singularity [6] which requires that they
approach the inner edge and the outer edge of a strip with
the singularities |x — s /2| /2 and |x —(s/2+ w)|"'/?, re-
spectively.

IV. RESULTS FOR NORMALIZED TRANSVERSE
CURRENT DISTRIBUTIONS

The current distribution if(x)/|i®(x,,)| normalized to
lif(x,,)| at the extremum point x = x,, can be calculated
by substituting the charge distributions o (x) and o ”(x)
and the effective relative permittivity e%7(0) at the
frequency f = 0 into (7).
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Fig. 6. Normalized transverse current distributions iZ(x)/[if(xZ.)

on the strip for the cases of w/h=1, s/h=35,10 and ¢*=2, 4, 8, 16
(even mode).

Fig. 4 shows the results of the transverse current distri-
bution if(x)/|i5(xE,)| on the strip normalized to
liE(xE. )| at the positive extremum point x =xZ, when
s/h=1. Fig. 5 shows similarly the results when w/h =1.
On the other hand, we obtain interesting results for the
cases w/h=1 and s/h=15, 10, as shown in Fig. 6. The
curves have both positive and negative extrema. However,
for single microstrip line the curve has only a positive
value [8, Figs. 8 and 9]. Fig. 7 shows the positions of
positive and negative extrema on the curves of the trans-
verse current distributions for the even mode, and the
negative to positive extrema ratios. The curves are ob-
tained by taking the arithmetic mean of the results for the
cases of e*=2, 4, 8, 16. We can derive a closed-form
expression for i£(x)/|iZ(xE, )| to approximate the calcu-
lated results for the cases with only a positive extremum
[10], but again it is not given here since it is complicated.
The result obtained is shown by the dashed line for the
case w/h=1and s/h=1in Fig. 5.

Fig. 8 shows the results of the transverse current distri-
butions i9(x)/[i%x2_)| on the strip normalized to
[i9(x2_)| at the negative extremum point x =x{_ when
w/h=1. Fig. 9 shows the results of the normalized trans-
verse current distributions on the strip when w/h=1. We
can derive the closed-form expression for i%(x)/]i%(x9_)|
to approximate the results for the cases with only a nega-
tive extremum [10]. The result obtained is shown by the
dashed line for the case of w/h =1 and s/h =1 in Fig. 9.
Fig. 10 shows the positions of negative and positive ex-
trema on the curves of the transverse current distributions
for the odd mode, and the positive to negative extrema
ratios.

Comparing the curves shown in Figs. 6 and 9, we notice
that the larger extremum of the normalized transverse
current distribution takes a positive value for the even
mode but a negative value for the odd mode. For the even
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Fig. 7. The results for the positive and negative extrema of transverse
current distributions (even mode).
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Fig. 8. Normalized transverse current distributions i9(x)/1%(x2_))
on the strip for the cases of w/h=1, s/h=0.5,1,and ¢*=2,4, 8,16
(odd mode) The curves for all €* coincide.
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Fig. 9. Normalized transverse current distributions 19(x)/19(x9_)|
on the strip for the cases of w/h =1, s/h=1,5,10, and e*=2, 4, 8,
16 (odd mode). —— Present method. ------ Approximate formula [10].
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Fig. 10. The results for positive and negative extrema of transverse
current distributions (odd mode).

mode, as s/h increases for w/h = constant, it begins to
have a negative part in the vicinity of the inner edge when
s/h is larger than some value, but for the odd mode it
begins to have a positive part in the vicinity of the outer
edge. These can be guessed by looking at the curves shown
in Figs. 6 and 9 together with the results shown in Figs. 7
and 10. We cannot distinguish the curves for the cases of
different €* in Figs. 4, 5, 6, 8, and 9, and therefore may
conclude that the dependence of the normalized transverse
current distribution on €* is extremely small, as for the
single microstrip line. The curves shown in those figures
satisfy the edge singularity [6] which requires that if(x)
behave like |x —s/2|*/? and |x —(s/2+ w)|'/? near the
inner edge and the outer edge of a strip, respectively.

V. CONCLUSIONS

The normalized longitudinal and transverse current dis-
tributions on coupled microstrip lines have been derived
and their dependence on €*, w/h, and s/h has been
explained. Accurate closed-form expressions for these dis-
tributions can be derived, although they are not given
explicitly in this paper. Good agreement is shown between
the theory and the approximate results. Using these cur-
rent distributions, the dispersion characteristics of coupled
microstrip lines will be investigated in the near future
using spectral-domain analysis.

ACKNOWLEDGMENT

The authors would like to thank the reviewers and the
editor for their valuable advice and helpful corrections to
the grammar.

REFERENCES

[1] T. Itoh and R. Mittra, “Spectral-domain approach for microstrip
transmission lines,” IEEE Trans. Microwave Theory Tech., vol.
MTT-21, pp. 496-499, July 1973.

[2] T. Itoh and R. Mittra, “A technique for computing dispersion
characteristics of shielded microstriplines,” IEEE Trans. Micro-
wave Theory Tech., vol. MTT-21, pp. 896—898, Oct. 1974.

[3] E. F. Kuester and D. C. Chang, “An appraisal of methods for
computation of the dispersion characteristics of open microstrip,”
TEEE Trans. Microwave Theory Tech., vol. MTT-27, pp. 691-694,
July 1979.

[4] E. J. Denlinger, “A frequency dependent solution for microstrip
transmission lines,” IEEE Trans. Microwave Theory Tech., vol.
MTT-19, pp. 30-39, Jan. 1971.

[5] M. K. Krage and G. I. Haddad, “Frequency-dependent characteris-
tics of microstrip transmission lines,” IEEE Trans. Microwave
Theory Tech., vol. MTT-20, pp. 678-688, Oct. 1972.

[6] R. Mittra and S. W. Lee, Analytical Techniques in the Theory of
Guided Waves. New York: Macmillan, 1971, pp. 4-11.

[71 M. Kobayashi, “Analysis of the microstrip and the electrooptic
light modulators,” IEEE Trans. Microwave Theory Tech., vol.
MTT-26, pp. 119-126, Feb. 1978.

[8] M. Kobayashi, “Longitudinal and transverse current distributions
on microstriplines and their closed-form expression,” IEEE Trans.
Microwave Theory Tech., vol. MTT-33, pp. 784-788, Sept. 1985.

[9] M. Kobayashi and F. Ando, “Dispersion characteristics of open
microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-
35, pp. 101-105, Feb. 1987.

[10] M. Kobayashi and H. Momoi, to be submitted for publication.



KOBAYASHI' AND MOMOI: LONGITUDINAL AND TRANSVERSE CURRENT DISTRIBUTIONS 593

Masanori Kobayashi (M’79) was born in Niigata, Dr. Kobayashi is a member of the Institute of Electrical Engineers of
Japan, on June 17, 1947. He received the B.E. Japan and the Institute of Electronics, Information and Communication
and M.E. degrees in electrical engineering from  Engineers of Japan.

1972, respectively, and the D.E. degree in electri-
cal and electronic engineering from the Tokyo
Institute of Technology, Tokyo, Japan, in 1981.

Since April 1972 he has been with the Depart-
ment of Electrical Engineering at Ibaraki Uni-
versity. He was a Research Assistant from April
1972 to March 1981 and a Lecturer from April
1981 to July 1982. Since August 1982, he has been an Associate Professor.
His research interests are in the areas of microstrip transmission lines,
dielectric optical waveguides, magnetic elements, and relativistic electro-
magnetic theory.

Ibaraki University, Ibaraki, Japan, in 1970 and .

L J

Hidetoshi Momoi was born in Fukushima, Japan,
on June 19, 1962. He received the B.E. and M.E.
degrees in electrical engineering from Ibaraki
University, Ibaraki, Japan, in 1985 and 1987,
respectively. In April 1987, he joined NTT,
Tokyo, Japan.

Mr. Momoi is a member of the Institute of
Electronics, Information and Communication
Engineers of Japan.



